Riemannian optimization of isometric tensor networks

نویسندگان

چکیده

Several tensor networks are built of isometric tensors, i.e. tensors satisfying W\dagger W = \mathbb{1} W†W=1 . Prominent examples include matrix product states (MPS) in canonical form, the multiscale entanglement renormalization ansatz (MERA), and quantum circuits general, such as those needed state preparation variational eigensolvers. We show how gradient-based optimization methods on Riemannian manifolds can be used to optimize isometries represent e.g. ground 1D Hamiltonians. discuss geometry Grassmann Stiefel manifolds, review state-of-the-art like nonlinear conjugate gradient quasi-Newton algorithms implemented this context. apply these context infinite MPS MERA, benchmark results which they outperform best previously-known methods, tailor-made for specific classes. also provide open-source implementations our algorithms.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Riemannian Optimization for High-Dimensional Tensor Completion

Tensor completion aims to reconstruct a high-dimensional data set with a large fraction of missing entries. The assumption of low-rank structure in the underlying original data allows us to cast the completion problem into an optimization problem restricted to the manifold of fixed-rank tensors. Elements of this smooth embedded submanifold can be efficiently represented in the tensor train (TT)...

متن کامل

Low-Rank Tensor Completion by Riemannian Optimization∗

In tensor completion, the goal is to fill in missing entries of a partially known tensor under a low-rank constraint. We propose a new algorithm that performs Riemannian optimization techniques on the manifold of tensors of fixed multilinear rank. More specifically, a variant of the nonlinear conjugate gradient method is developed. Paying particular attention to the efficient implementation, ou...

متن کامل

Isometric Embeddings of Riemannian Manifolds

The dot in (1) denotes the usual scalar product of R. The notion embedding means, that w is locally an immersion and globally a homeomorphism of M onto the subspace u(M) of R*. If an embedding w : M -• R satisfies (1) on the whole M, we speak of an isometric embedding. If w is an immersion and a solution of (1) in a (possibly small) neighbourhood of any point of M, we speak of a local isometric...

متن کامل

Relative Isometric Embeddings of Riemannian Manifolds

We prove the existence of C1 isometric embeddings, and C∞ approximate isometric embeddings, of Riemannian manifolds into Euclidean space with prescribed values in a neighborhood of a point.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SciPost physics

سال: 2021

ISSN: ['2542-4653']

DOI: https://doi.org/10.21468/scipostphys.10.2.040